30 research outputs found

    Thorough in silico and in vitro cDNA analysis of 21 putative BRCA1 and BRCA2 splice variants and a complex tandem duplication in BRCA2 allowing the identification of activated cryptic splice donor sites in BRCA2 exon 11

    Get PDF
    For 21 putative BRCA1 and BRCA2 splice site variants, the concordance between mRNA analysis and predictions by in silico programs was evaluated. Aberrant splicing was confirmed for 12 alterations. In silico prediction tools were helpful to determine for which variants cDNA analysis is warranted, however, predictions for variants in the Cartegni consensus region but outside the canonical sites, were less reliable. Learning algorithms like Adaboost and Random Forest outperformed the classical tools. Further validations are warranted prior to implementation of these novel tools in clinical settings. Additionally, we report here for the first time activated cryptic donor sites in the large exon 11 of BRCA2 by evaluating the effect at the cDNA level of a novel tandem duplication (5 breakpoint in intron 4; 3 breakpoint in exon 11) and of a variant disrupting the splice donor site of exon 11 (c.6841+1G>C). Additional sites were predicted, but not activated. These sites warrant further research to increase our knowledge on cis and trans acting factors involved in the conservation of correct transcription of this large exon. This may contribute to adequate design of ASOs (antisense oligonucleotides), an emerging therapy to render cancer cells sensitive to PARP inhibitor and platinum therapies

    The identification of Lynch syndrome in British Columbia

    No full text
    OBJECTIVE: To determine the prevalence of Lynch syndrome mutations in a Canadian hereditary cancer clinic population, and to determine the effectiveness of the program’s referral criteria and testing algorithm

    CDKN2A founder mutation in pancreatic ductal adenocarcinoma patients without cutaneous features of Familial Atypical Multiple Mole Melanoma (FAMMM) syndrome

    No full text
    Background: Approximately 5% to 10% of pancreatic ductal adenocarcinoma (PDAC) has a hereditary basis. In most of these defined hereditary cancer syndromes, PDAC is not the predominant cancer type. Traditional criteria for publicly funded genetic testing typically require the presence of a set combination of the predominant syndrome-associated cancer types in the family history. We report the identification of a CDKN2A pathogenic variant in a PDAC-prone family without the cutaneous features of multiple moles or melanoma that are characteristic of the Familial Atypical Multiple Mole Melanoma (FAMMM) Syndrome identified in a universal testing algorithm for inherited mutations in pancreatic cancer patients. Case presentation: We present the case of two brothers of English ancestry diagnosed with PDAC within the same 12 month period, at the respective ages of 63 and 64 years of age. Neither brother reported a personal history of multiple moles or melanoma. Family history was positive for two second-degree relatives diagnosed with PDAC but was negative for other cancers or multiple moles in first- and second-degree relatives. Due to the absence of melanoma, this family did not meet provincial criteria for publicly funded genetic testing. Clinical genetic testing offered through a research grant identified a pathogenic variant in the CDKN2A gene c.377 T > A (p.Val126Asp). This variant is a North American founder mutation believed to pre-date colonization. Conclusions: This case reminds clinicians to consider the possibility of a germline CDKN2A mutation in families with a high prevalence of PDAC, even in the absence of moles or melanoma. This case supports recent guidelines published by the American College of Medical Genetics and Genomics (ACMG) that genetics referrals are indicated in families with three or more cases of PDAC regardless of other cancer types in the family. A multi-gene panel approach is of particular benefit in diagnosing inherited cancer susceptibility in PDAC-only families.Medicine, Faculty ofNon UBCMedical Genetics, Department ofPathology and Laboratory Medicine, Department ofReviewedFacult
    corecore